Code No.: 14245

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (C.S.E./AIML) IV-Semester Main & Backlog Examinations, July-2022 Operating Systems

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	What is the state transition that occurs due to the scanf () system call in the program is given below?	2	2	1	1,2
	int main(){				
	int a; scanf("%d \n ", &a);				
	exit(0) }				
2.	Why is it important for the scheduler to distinguish I/O-bound programs from CPU-bound programs?	2	1	1	1,2
3.	Consider the following memory map using the partition model (Shaded - In use and White - Free).	2	3	2	1,2
	A new process, Pnew is of size 7k. Where Pnew is placed in Best Fit and Worst Fit techniques?				
	8k 10k 20k 5k 6k 48k 34k 7k 18k				
4.	What is Belady's anomaly? Which algorithm suffers from this anomaly?	2	1	2	1,2
5.	Consider two process P1 and P2 such that always process P1 should execute first and then process P2. Design a solution using semaphores.	2	3	3	1,2
6.	A system is having 3 user processes each requiring 2 units of resource R. Find The minimum number of units of R such that no deadlock will occur.	2	3	3	1,2
7.	Find the average rotational latency of a device rotating at 600 RPM?	2	3	4	1,2
8.	Draw a diagram to show the implementation of I/O with DMA controller.	2	1	4	1,2
9.	List the key components of Linux operating system.	2	1	5	1,2
10.	What is the importance of Hardware Abstraction layer in Windows architecture?	2	1	5	1,2

		Part-B	$(5\times8=40~M$	farks)					
1. a)	Explain the followal MS-DOS			ructure with c) iOS	neat sketches	4	1	1	1,2
b)	Consider the set of 4 processes whose arrival time and burst time are				4	3	1	1,2	
	given below								
	Process No. Arrival Time Burst Time								
			CPU Burst	I/O Burst	CPU Burst				
	P1	0	3	2	2				
	P2	0	2	4	. 1				
	P3	2	1	3	2	5			
	P4	5	2	2	1				
2. a)	calculate the ave	erage waiting	time and turn	n-around tin	ing Time First, ne.	4	2	2	1,2
,	following page (a) Hierarch			Inverted		ryusi			
b)	i) If the total number of available frames is 50, and there are 2 processes					4	3	2	1,2
	one of 10 pages and the other of 5 pages, then how much of memory								
	would be propor					20			
	ii) Consider a logical address space of 64 pages of 1,024 words each,								
	mapped onto a p	physical men	nory of 32 fram	mes.					
	a. How many bits are there in the logical address?								
	b. How many bi	its are there i	n the physical	address?					
3. a)	Two processes,	P1 and P2,	need to acces	ss a critical	section of code.	4	2	3	1,2,3
	Consider the following synchronization construct used by the								
	processes:					bear is			
	/* P1 */	18740	/* P2 */	eletti					
	while (true) {		while (true)	{					
	wants1 = true	e;	wants2 = tr	ue;					
	while (wants		while (wan	ts1==true);					
	/* Critical		/* Critical						
	Section */		Section */	/					
	wants1=false		wants2 = fa						
	1	,	}						
	/* Remainder	section */	/* Remainde	er section */	7.11.3011				
		e construct	satisfy Mutu		are initialized to on, Progress and				

b)	Consider the following snapshot of a system	4	3	3	1,2,3
100	Allocation Max				-,-,-
	ABCD ABCD				
	P0 3014 5117				
	P1 2210 3211				
	P2 3121 3321				
	P3 0510 4612				
	P4 4212 6325				
	Using the banker's algorithm, determine whether the system is in safe				
1	state or not? Available= (0,3,0,1)				
14. a)	Suppose a disk has 201 cylinders, numbered from 0 to 200. At some time the disk arm is at cylinder 100, and there is a queue of disk access requests for cylinders 30, 85, 90, 100, 105, 110, 135 and 145. If Shortest-Seek Time First (SSTF) is being used for scheduling the disk access, the request for cylinder 90 is serviced after servicing how many number of requests?	4	3	4	1,2,3
b)	Explain the steps in I/O operation implementation with the help a flow diagram.	4	2	4	1,2,3
15. a)	What is the Access matrix? Explain the implementation of access matrix for protection implementation.	3	2	5	1,2,3
b)	Describe the algorithm used for process scheduling in Linux.	5	1	5	1,2,3
16. a)	Describe the role of Schedulers in process execution and show the same in the process transition diagram.	4	2	1	1,2,3
b)	Explain the significance of TLB in Page Table implementation. If the hit ratio to a TLB is 80%, and it takes 15 nanoseconds to search the	4	3	2	1,2,3
	TLB, and 150 nanoseconds to access the main memory, then what must be the effective memory access time in nanoseconds?				
17.	Answer any <i>two</i> of the following:				
a)	Design a solution for Readers-Writers problem by using Monitors.	4	2	3	1,2,3
b)	Explain the issues in Disk Management.	4	2	4	1,2,3
c)	Describe the life cycle of an Activity and a Service in the Android operating system.	4	2	5	1,2,3

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	32%
iii)	Blooms Taxonomy Level – 3 & 4	48%